Defend with Profend®

Nasal Antiseptic Kit to protect surgical and ICU patients from infections.

60-second application with Profend® nasal antiseptic swabs kills
99.7% of *Staphylococcus aureus (S. aureus)* at
10 minutes and 99.9% at 12 hours.¹

BE THE DIFFERENCE®

PROFEND PVP-IODINE NASAL ANTISEPTIC SWABS.

Defend with **Profend** nasal antiseptic kits.

Apply in nose for 60 seconds.

15 seconds per swab— up to 2.5x faster than other PVP-Iodine swabs.² Use all 4 swabs for one application.

99.9%

Kills 99.7% of S. aureus

in 10 minutes and 99.9% at 12 hours.¹

For surgery, ICU, and other hospital areas.

Ideal for patients colonized with *S. aureus.*³

SIMPLY **EFFECTIVE**INFECTION PREVENTION.

96.6% of patients surveyed are comfortable with nasal application of PVP-Iodine.⁴

AL SWABSTI

Povidone-lodine USP, 10% w/w Antiseptic, Non-sterile solution

Profend

Preferred by over 90% of clinicians.⁵

Considered faster and more efficient to use than other nasal PVP-Iodine products.

Just snap and swab.

No preparation needed: pre-saturated swabs are easy to apply, with a neat, dry design.

DEFEND AGAINST SSIs, CLABSIs, AND OTHER HAIs.

30%

Up to 30% of healthy adults carry *S. aureus* nasally.⁶

85% of *S. aureus* SSIs* come from the patient's own nasal flora.⁷

9x the risk

Nasal colonization increases SSI risk up to 9x.8

77% of SSI-related deaths were directly attributable to the SSI.9

Patients in ICUs, long-term care and hemodialysis units are at risk.

S. aureus causes 12% of CLABSIs †10 and 24% of VAPs. ‡11

IDEAL FOR IN-PATIENT/AMBULATORY SURGERY AND THE ICU.

99.9%

Apply before any type of surgery.

Profend nasal antiseptic swabs kill *S. aureus* immediately and have 99.7% efficacy at 10 minutes and 99.9% at 12 hours.¹

Administer to critical care patients per facility protocol.

Helps reduce the risk of *S. aureus* nasal re-colonization.

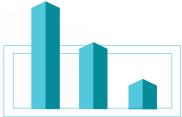
Clinician-administered for 100% compliance.

No mixing, mess or complicated steps: just use 4 swabs in nose in 60 seconds.

PROMOTE **BETTER** OUTCOMES AND REDUCE HAI RISK.

290,000

290,000 SSI events happen per year.¹²


SSIs are 20% of all HAIs^{§12}, and account for >90,000 readmissions annually.¹³

Surgical site infections can raise average surgical hospital costs by 82%.¹⁴

SSIs continue to be an expensive burden to hospital budgets.

Bacterial decolonization lowers hospital expenses.¹⁵

Decolonization has been shown to reduce HAIs, length of stays, and costs.

NASAL DECOLONIZATION IS PART OF A **NEW STANDARD** OF CARE.

Nasal decolonization with PVP-I is now a CDC core strategy.¹⁶

Recommended to reduce *S. aureus* in high risk surgeries, critical care and central IV catheter patients.

Defend patients against antibiotic resistance.

As a PVP-Iodine antiseptic, **Profend** nasal swabs support your initiatives against antibiotic resistance.¹⁷

Easy, efficient application promotes protocol compliance.

60 second **Profend** nasal antiseptic swab application is a simple part of the surgical or ICU routine.

Defend with Profend nasal antiseptic swabs as part of a **layered approach** to infection prevention.

No single approach can fully eliminate the risk of HAIs. That's why healthcare institutions need multiple layers of defense to attack infections from all angles. **Profend** nasal antiseptic kits can help provide effective infection risk reduction at the innermost layer: patients themselves. It's just one of PDI Healthcare's integrated products that helps you implement an overall infection prevention strategy.

Learn more at www.DefendwithProfend.com

	NDC	REORDER NO.	COUNT	CASE PACK	TI/HI	CASE WEIGHT	CASE CUBE
Profend® Nasal Antiseptic Kit							
Patient Kit	#10819-3888	X12048	48 patient units/case	4 swabs/patient pack, 12 patient packs/shelf unit, 4 shelf units/case	30/5	2.7 lbs	0.263 ft ³

References: 1. PDI Study PDI-0113-CTEV01. 2. Instructions for use. 3. PDI Study PDI-0113-KT1. 4. Maslow J, Hutzler L, Cuff G, Rosenberg A, Phillips M, Bosco J. Patient experience with mupirocin or povidone-iodine nasal decolonization. Orthopedics. 2014;37(6):e576–e581. 5. PDI user acceptance study. 6. VandenBergh MF, Yzerman EP, van Belkum A, Boelens HA, Sijmons M, Verbrugh HA. Follow-up of Staphylococcus aureus nasal carriage after 8 years: redefining the persistent carrier state. J Clin Microbiol. 1999;37:3133–3140. 7. Septimus EJ. Nasal Decolonization: What antimicrobials are more effective prior to surgery? Am J Infect Control 2019;47S:A53-A57. doi: 10.1016/j.ajic.2019.02.028. 8. Kalmeijer MD, van Nieuw-land-Bollen E, Bogaers-Hofman D, de Baere GA. Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect Control Hosp Epidemiol. 2000;21(15)319-323. 9. Awad SS. Adherence to surgical care improvement project measures and post-operative surgical site infections. Surg Infect (Larchmt). 2012;13(4):234–237.

10. Burton DC, Edwards JR, Horan TC, Jernigan JA, Fridkin SK. Methicillin-resistant Staphylococcus aureus central line-associated bloodstream infections in US intensive care units, 1997-2007; JAMA. 2009;301(7):727–736. doi:10.1001/jama.2009.153. 11. Greene LR, Sposato K. Guide to the elimination of ventilator-associated pneumonia. Washington, DC: Association for Professionals in Infection Control and Epidemiology (APIC); 2009. http://www.apic.org/Resource_/EliminationGuideForm/18e326ad-b484-471c-9c35-6822a53e4a2/File/VAP_09. pdf. Accessed January 23, 2018. 12. Klevens RM, Edwards JR, Richards CL, et al. Estimating healthcare-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep. 2007;122(2):160–166. 13. Ban KA, Minei JP, Laronga C, et al. American College of Surgeons and Surgical Infection Society: Surgical Site Infection Guidelines, 2016 Update. J Am College of Surgeons and Surgical Infection Society: Surgical Site Infectio

- * Surgical site infections
- † Central line-associated bloodstream infections
- ‡ Ventilator-associated pneumonia
- § Healthcare-associated infections

